Highly Selective Hydrogenation of Buta-1,3-diene to *cis*-But-2-ene over Molybdenum Subcarbonyl Species encapsulated in Alkali Metal Cation Exchanged Y-Zeolites

Yasuaki Okamoto,* Akinori Maezawa, Hiroshige Kane, and Toshinobu Imanaka

Department of Chemical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Molybdenum subcarbonyl species encaged in a zeolite, particularly in LiY, showed a high activity for the selective hydrogenation of buta-1,3-diene to *cis*-but-2-ene (>96%), providing the first example of hydrogenation activity of molybdenum subcarbonyl species immobilized on inorganic matrices.

Hexacarbonylmolybdenum supported on inorganic matrices is a potential precursor of well-dispersed low valent molybdenum catalysts.¹ The catalytically active species consist of Mo subcarbonyls, Mo metal, and partially oxidized species. There have so far been only a few reports of the catalytic properties of molybdenum subcarbonyls stabilized on oxide surfaces. With $Mo(CO)_6/Al_2O_3$ catalysts, Brenner and Burwell² demonstrated that a subcarbonyl species, $Mo(CO)_3$, formed at 373 K showed activity for the metathesis of propene at 326 K which was 20—30 times lower than that of the partially oxidized Mo species produced by higher temperature activation. O'Neill and Rooney³ and Brenner *et al.*⁴ made similar observations. There have so far been no further studies of the catalytic properties of molybdenum subcarbonyls immobilized on inorganic materials.

An NaY zeolite (Si/Al 2.78) and its alkali-metal cation exchanged forms (M⁺-Y; M⁺ = Li, K, and Cs) were employed for the encapsulation of Mo(CO)₆. A decationized zeolite (HY), TiO₂ (Degussa, P-25), and γ -Al₂O₃ were also examined. The zeolite was exposed to Mo(CO)₆ vapour at room temperature for 12 h after evacuation at 673 K for 1--2 h. The amount of Mo(CO)₆ encaged in the zeolite was about two molecules/supercage irrespective of the cation involved. The hydrogenation of buta-1,3-diene was conducted over the molybdenum species at 19.3 ± 0.7 kPa (H₂/butadiene = 2) and 423 K using a closed circulation system (200 cm³), with 50 mg of the zeolite. Reaction gases were analysed by g.l.c.

The compositional change of the reaction gas is depicted in Figure 1 for the hydrogenation of butadiene over a freshly prepared $Mo(CO)_6/LiY$ catalyst as a function of the reaction time. Butadiene is preferentially hydrogenated to *cis*-but-2-ene (>96%) at a significant rate, while the hydrogenation of *cis*-but-2-ene is not promoted at all and a slow isomerization is observed only after the complete consumption of butadiene.

Carbon monoxide was evolved by partial decomposition of $Mo(CO)_6$ and its pressure was *ca.* 1.3 kPa during the reaction. This was also observed with the other freshly prepared $Mo(CO)_6$ catalyst systems. It was found that the catalyst could be reused in spite of a gradual activity loss, so long as CO was present during the reaction. When completely decarbonylated at 473 K, the molybdenum catalyst exhibited a significantly reduced activity and a different product distribution. The selectivity was not altered by the presence of CO.

Figure 1. Composition of the reaction gas as a function of time for the hydrogenation of buta-1,3-diene over a $Mo(CO)_6/LiY$ zeolite catalyst at 423 K. \Box , butadiene; \bigcirc , *cis*-but-2-ene; \triangle , but-1-ene; \bullet , *trans*-but-2-ene.

Table 1. Hydrogenation of buta-1,3-diene over $Mo(CO)_6$ encaged in zeolites at 423 K.

		% Conversion		Selectivity/% ^c			
Zeolite ^a	Activation ^b	at 5 min/%	n-b	1-b	<i>t</i> -2-b	<i>c</i> -2-b	
LiY (45)	F	97.2	0.0	3.7	0.3	96.0	
. /	473 K	6.6	5.3	42.2	11.2	41.3	
	373 Kd	6.0 ^d	0.0	1.6	0.0	98.4	
NaY	F	79.2	0.1	3.2	0.2	96.5	
	373 Kd	2.7ª	0.0	0.3	0.0	99.7	
KY (51)	F	12.9	0.0	3.2	0.3	96.5	
CsY (58)	F	7.6	0.0	3.2	0.0	96.8	
HY (76)	F	1.7	4.9	13.6	51.8	29.7	
	473 K	14.2	10.4	34.1	14.9	40.6	
$TiO_{2}(3.1)^{e}$	F	4.5	3.2	55.4	12.5	28.9	
Al_2O_3 (2.0) ^e	F	3.1	2.1	53.3	12.2	32.4	

^a Number in parentheses: degree of ion exchange. ^b F: non-treatment; $Mo(CO)_6$ was used as prepared. After the reaction, the catalyst was evacuated at 473 K. ^c n-b; n-butane, 1-b; but-1-ene, *t*-2-b and *c*-2-b; *trans*- and *cis*-but-2-ene, respectively. ^d Reaction temperature 273 K and % conversion at 1 h. ^c Loading level of Mo (wt. %).

These catalytic results for the Mo(CO)₆/LiY catalyst are summarized in Table 1, together with those for the other Mo(CO)₆ catalysts. M⁺–Y zeolites show excellent selectivity for formation of *cis*-but-2-ene in the hydrogenation of butadiene. However, the activity decreases in the order LiY > NaY \gg KY > CsY. On the other hand, the HY zeolite and other non-zeolitic materials showed non-selective hydrogenation properties under the present activation and reaction conditions.

It is well established that Mo subcarbonyl species thermally stable at *ca*. 420 K are reversibly formed in the supercages of $M^+-Y^{5,6}$ and HY^7 zeolites during the decomposition of $Mo(CO)_6$. The subcarbonyl species was shown to be $Mo(CO)_3$ on the basis of i.r.,⁶ temperature programmed decomposition,⁶ and ¹³CO-isotopic labelling techniques.⁸ Mo carbonyls, $Mo(CO)_r$ (x = 6—4), were found to be unstable at the reaction temperature in the zeolite cages.⁵⁻⁷ On evacuation at 473 K, Mo(CO)₃ was irreversibly decomposed to Mo metal for M⁺-Y zeolites^{5,6} or to partially oxidized Mo species for HY,⁷ Al₂O₃,⁹ and, probably, TiO₂. Accordingly, it is concluded that molybdenum subcarbonyl species encaged in M+-Y zeolites are responsible for the highly selective hydrogenation of buta-1,3-diene to cis-but-2-ene, whereas Mo metal and partially oxidized Mo species are responsible for the nonselective hydrogenation. The catalytically active subcarbonyl species is considered to be $Mo(CO)_3$, considering the much lower thermal stability of the other carbonyls at the reaction temperature. As shown in Table 1, Mo(CO)₃ produced in LiY or NaY by evacuation at 373 K shows highly selective hydrogenation activity at 273 K and further decarbonylation did not occur during the reaction. The hydrogenation is considered to proceed via a Mo(CO)₃(butadiene) complex, on the basis of i.r. evidence.

Extremely high activities for the hydrogenation of propene reported by Brenner¹⁰ over $Mo(CO)_6/Al_2O_3$ catalysts at 423—473 K in a flow reaction system should be ascribed to highly dispersed Mo metal and/or partially oxidized Mo species, since the subcarbonyls show no alkene hydrogenation activities as deduced from Table 1. This was confirmed by separate experiments.

Received, 28th October 1987; Com. 1573

References

- 1 D. C. Bailey and S. H. Langer, Chem. Rev., 1981, 81, 109.
- 2 A. Brenner and R. L. Burwell, J. Catal., 1978, 52, 364.
- 3 P. P. O'Neill and J. J. Rooney, J. Am. Chem. Soc., 1972, 94, 4383.
 4 A. Brenner, D. A. Hucul, and S. J. Hardwick, Inorg. Chem.,
- 1979, 18, 1478.
 5 Y. Yong-Sing and R. F. Howe, J. Chem. Soc., Faraday Trans. 1., 1986, 82, 2887.
- 6 Y. Okamoto, A. Maezawa, H. Kane, I. Mitsushima, and T. Imanaka, J. Chem. Soc., Faraday Trans. 1, in the press.
- 7 P. Gallezot, G. Coudurier, M. Primet, and B. Imelik, 'Molecular Sieves, II,'ed. J. R. Katzer, ACS Symp. Ser. 1977, Vol. 40, p. 144.
- 8 Y. Okamoto, to be published.
- 9 A. Brenner and R. L. Burwell, J. Catal., 1978, 52, 353.
- 10 A. Brenner, J. Mol. Catal., 1979, 5, 157.