Highly Selective Hydrogenation of Buta-I ,3-diene to cis-But-2-ene over Molybdenum Subcarbonyl Species encapsulated in Alkali Metal Cation Exchanged Y-Zeolites

Yasuaki Okamoto," Akinori Maezawa, Hiroshige Kane, and Toshinobu lmanaka

Department of Chemical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Molybdenum subcarbonyl species encaged in a zeolite, particularly in LiY, showed a high activity for the selective hydrogenation of buta-l,3-diene to cis-but-2-ene **(>96%),** providing the first example of hydrogenation activity of molybdenum subcarbonyl species immobilized on inorganic matrices.

Hexacarbonylmolybdenum supported on inorganic matrices is a potential precursor of well-dispersed low valent molybdenum catalysts. **1** The catalytically active species consist of Mo subcarbonyls, Mo metal, and partially oxidized species. There have so far been only a few reports of the catalytic properties of molybdenum subcarbonyls stabilized on oxide surfaces. With $Mo(CO)₆/Al₂O₃$ catalysts, Brenner and Burwell² demonstrated that a subcarbonyl species, $Mo(CO)_{3}$, formed at 373 K showed activity for the metathesis of propene at 326 K which was 20-30 times lower than that of the partially oxidized Mo species produced by higher temperature activation. O'Neill and Rooney3 and Brenner *et* **ai.4** made similar observations. There have so far been no further studies of the catalytic properties of molybdenum subcarbonyls immobilized on inorganic materials.

An NaY zeolite (Si/Al 2.78) and its alkali-metal cation exchanged forms $(M^+ - Y; M^+ = Li, K, and Cs)$ were employed for the encapsulation of Mo(CO)₆. A decationized zeolite (HY), TiO₂ (Degussa, P-25), and γ -Al₂O₃ were also examined. The zeolite was exposed to $Mo(CO)_6$ vapour at room temperature for 12 h after evacuation at 673 K for $1-2$ h. The amount of $Mo(CO)_6$ encaged in the zeolite was about two molecules/supercage irrespective of the cation involved. The hydrogenation of buta-l,3-diene was conducted over the molybdenum species at 19.3 \pm 0.7 kPa (H₂/butadiene = 2) and 423 K using a closed circulation system (200 cm3), with 50 mg of the zeolite. Reaction gases were analysed by g.1.c.

The compositional change of the reaction gas is depicted in Figure 1 for the hydrogenation of butadiene over a freshly prepared $Mo(CO)₀/LiY$ catalyst as a function of the reaction time. Butadiene is preferentially hydrogenated to cis-but-2 ene **(>96%)** at a significant rate, while the hydrogenation of cis-but-2-ene is not promoted at all and a slow isomerization **is** observed only after the complete consumption of butadiene.

Carbon monoxide was evolved by partial decomposition of $Mo(CO)₆$ and its pressure was *ca*. 1.3 kPa during the reaction. This was also observed with the other freshly prepared $Mo(CO)₆$ catalyst systems. It was found that the catalyst could be reused in spite of a gradual activity loss, so long as CO was present during the reaction. When completely decarbonylated at 473 K, the molybdenum catalyst exhibited a significantly reduced activity and a different product distribution. The selectivity was not altered by the presence of CO.

Figure 1. Composition of the reaction gas as a function of time for the hydrogenation of buta-1,3-diene over a Mo(CO)₆/LiY zeolite catalyst at 423 K. \Box , butadiene; \bigcirc , *cis*-but-2-ene; \triangle , but-1-ene; \bullet , trans-but-2-ene.

Table 1. Hydrogenation of buta-l,3-diene over Mo(CO), encaged in zeolites at $423 \overline{K}$.

		$\%$ Conversion		Selectivity/% \circ		
Zeolite ^a	Activationb	at 5 min/ $%$	n-b	$1-b$		$t-2-b$ $c-2-b$
LiY(45)	F	97.2	0.0	3.7	0.3	96.0
	473 K	6.6	5.3	42.2	11.2	41.3
	373 K ^d	6.0 ^d	0.0	1.6	0.0	98.4
NaY	F	79.2	0.1	3.2	0.2	96.5
	373 K ^d	2.7 ^d	0.0	0.3	0.0	99.7
KY(51)	F	12.9	0.0	3.2	0.3	96.5
CsY(58)	F	7.6	0.0	3.2	0.0	96.8
HY(76)	F	1.7	4.9	13.6	51.8	29.7
	473 K	14.2	10.4	34.1	14.9	40.6
TiO ₂ (3.1) ^e	F	4.5	3.2	55.4	12.5	28.9
$Al_2O_3(2.0)$	F	3.1	2.1	53.3	12.2	32.4

a Number in parentheses: degree of ion exchange. **b** F: non-treatment; $Mo(CO)_{6}$ was used as prepared. After the reaction, the catalyst was evacuated at 473 K. *c* n-b; n-butane, 1-b; but-1-ene, *t-2-b* and c-2-b; *trans-* and cis-but-2-ene, respectively. **d** Reaction temperature 273 K and % conversion at 1 h. *e* Loading level of Mo (wt. %).

These catalytic results for the $Mo(CO)/U$ **i**Y catalyst are summarized in Table 1, together with those for the other $Mo(CO)₆$ catalysts. M⁺-Y zeolites show excellent selectivity for formation of cis-but-2-ene in the hydrogenation of butadiene. However, the activity decreases in the order LiY > $\text{NaY} \gg \text{KY} > \text{CsY}$. On the other hand, the HY zeolite and other non-zeolitic materials showed non-selective hydrogenation properties under the present activation and reaction conditions.

It is well established that Mo subcarbonyl species thermally stable at *ca.* 420 K are reversibly formed in the supercages of M^+ -Y^{5,6} and HY⁷ zeolites during the decomposition of $Mo(CO)₆$. The subcarbonyl species was shown to be $Mo(CO)₃$ on the basis of i.r.,⁶ temperature programmed decomposition,⁶ and ¹³CO-isotopic labelling techniques.⁸ Mo carbonyls, $Mo(CO)_{x}$ ($x = 6-4$), were found to be unstable at the reaction temperature in the zeolite cages. $5-7$ On evacuation at 473 K, $Mo(CO)_{3}$ was irreversibly decomposed to Mo metal for M^+ -Y zeolites^{5,6} or to partially oxidized Mo species for HY,⁷ $A₁, O₃,⁹$ and, probably, TiO₂. Accordingly, it is concluded that molybdenum subcarbonyl species encaged in M^+ -Y zeolites are responsible for the highly selective hydrogenation of buta-l,3-diene to cis-but-2-ene, whereas Mo metal and partially oxidized Mo species are responsible for the nonselective hydrogenation. The catalytically active subcarbonyl species is considered to be $Mo(CO)_{3}$, considering the much lower thermal stability of the other carbonyls at the reaction temperature. As shown in Table 1, $Mo(CO)$ ₃ produced in LiY or NaY by evacuation at 373 K shows highly selective hydrogenation activity at 273 K and further decarbonylation did not occur during the reaction. The hydrogenation is considered to proceed via a $Mo(CO)_{3}$ (butadiene) complex, on the basis of i.r. evidence.

Extremely high activities for the hydrogenation of propene reported by Brenner¹⁰ over $Mo(CO)₆/Al₂O₃$ catalysts at 423-473 K in a flow reaction system should be ascribed to highly dispersed Mo metal and/or partially oxidized Mo species, since the subcarbonyls show no alkene hydrogenation actvities as deduced from Table 1. This was confirmed by separate experiments.

Received, *28th* October 1987; *Corn. 1573*

References

- 1 D. C. Bailey and S. H. Langer, *Chem. Rev.,* 1981, **81,** 109.
- 2 A. Brenner and R. **L.** Burwell, J. *Catal.,* 1978, **52,** 364.
- 3 P. **P.** O'Neill and J. J. Rooney, J. *Am. Chem. SOC.,* 1972,94,4383. 4 A. Brenner, D. A. Hucul, and **S.** J. Hardwick, *Inorg. Chem.,*
- *5* Y. Yong-Sing and R. F. Howe, J. *Chem. SOC., Faraday Trans. 1* ., 1979, **18,** 1478. 1986, **82,** 2887.
- 6 **Y.** Okarnoto, A. Maezawa, H. Kane, **I.** Mitsushirna, and T. Irnanaka, *J. Chem. SOC., Faraday Trans. 1,* in the press.
- 7 P. Gallezot, G. Coudurier, M. Primet, and B. Irnelik, 'Molecular Sieves, 11,' ed. J. R. Katzer, ACS Symp. Ser. 1977, Vol. 40, p. 144.
- 8 **Y.** Okamoto, to be published.
- 9 A. Brenner and R. L. Burwell, J. *Catal.,* 1978, **52,** 353.
- 10 A. Brenner, J. *Mol. Catal.,* 1979, *5,* 157.